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We address the failure in scalability of large-scale parallel simulations that are based on
(semi-)implicit time-stepping and hence on the solution of linear systems on thousands
of processors. We develop a general algorithmic framework based on domain decomposi-
tion that removes the scalability limitations and leads to optimal allocation of available
computational resources. It is a non-intrusive approach as it does not require modification
of existing codes. Specifically, we present here a two-stage domain decomposition method
for the Navier–Stokes equations that combines features of discontinuous and continuous
Galerkin formulations. At the first stage the domain is subdivided into overlapping patches
and within each patch a C0 spectral element discretization (second stage) is employed.
Solution within each patch is obtained separately by applying an efficient parallel solver.
Proper inter-patch boundary conditions are developed to provide solution continuity,
while a Multilevel Communicating Interface (MCI) is developed to provide efficient com-
munication between the non-overlapping groups of processors of each patch. The overall
strong scaling of the method depends on the number of patches and on the scalability of
the standard solver within each patch. This dual path to scalability provides great flexibility
in balancing accuracy with parallel efficiency. The accuracy of the method has been eval-
uated in solutions of steady and unsteady 3D flow problems including blood flow in the
human intracranial arterial tree. Benchmarks on BlueGene/P, CRAY XT5 and Sun Constella-
tion Linux Cluster have demonstrated good performance on up to 96,000 cores, solving up
to 8.21B degrees of freedom in unsteady flow problem. The proposed method is general
and can be potentially used with other discretization methods or in other applications.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The scalability bottleneck: The main obstacle to realizing petaflop speeds on multi-petaflop-scale systems and beyond is
scalability of algorithms for large-scale problems [1,2]. For time-dependent problems in particular governed by PDEs, impli-
cit or semi-implicit temporal discretization leads to solution of very large linear systems, e.g., the solution of Poisson equa-
tion. Current solvers typically fail to scale beyond 1000 processors whereas the new petaflop systems are based on more than
100,000 processors. Even a solver with OðN3=2Þ scaling takes more than 90% of the total computation time whereas the
remaining 10% is spent on the OðNÞ complexity part of the code. Hence, the entire computation time is almost ‘‘all-solver”
when the size of the problem N increases. Moreover, the condition number of the corresponding matrix is extremely large
and while effective preconditioners can reduce it substantially, such preconditioners are typically not scalable. Progress can
be made by re-formulating existing parallel algorithms to first avoid solving one monolithic big system, and second to
. All rights reserved.

x: +1 401 863 3369.
dakis).

http://dx.doi.org/10.1016/j.jcp.2010.04.014
mailto:gk@dam.brown.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


5542 L. Grinberg, G.E. Karniadakis / Journal of Computational Physics 229 (2010) 5541–5563
provide flexibility on how to assign subdomains onto subsets of nodes/processors in existing computer configurations. How-
ever, it is not always possible to perform significant modifications to existing well-tested parallel PDE solvers and it is pref-
erable to follow a ‘‘non-intrusive” upgrade, i.e., to re-use existing codes.

Domain decomposition: The approach we follow here is to break up the domain into ‘‘patches” and to couple an existing
solver (applied to compute a solution within each patch) to itself through a set of proper interface boundary conditions be-
tween patches. We have tested this approach in preliminary work in [3], where we discussed such multi-patch domain
decomposition method for spectral/hp element discretization (SEM). The method presented in [3] considered decomposition
of the large computational domains into several non-overlapping patches. However, this approach is not always stable and it
cannot preserve the so-called ‘‘spectral-accuracy” of SEM. In the current study we introduce overlapping 3D subdomains that
lead to stable simulations and also improve the spatio-temporal accuracy, essentially recovering full spectral accuracy. The
new method based on domain-decomposition techniques and overlapping patches is more robust, however, the use of over-
lapping patches increases somewhat the computational complexity.

Literature review: There have been several approaches for solving PDEs using different domain-decomposition techniques,
mostly with the objective of constructing effective preconditioners. Here we review some works that share similar features
with our approach.

Chen and Lazarov [4] studied domain splitting method for solving mixed finite element approximations to parabolic
initial boundary problems. Their method was designed to produce a non-iterative time-stepping scheme, i.e., solution in
each subdomain was performed separately and no sub-iterations were required for convergence of the numerical solu-
tion at the subdomain interfaces. Instead, local averaging was applied to enhance the accuracy of the solution at the
subdomain interfaces. This paper also provides a proof of stability of the algorithm in the L2-norm and analyzes its
accuracy.

Application of overlapping domain decomposition methods for solving scalar convection–diffusion problems in 2D do-
mains in conjunction with a finite difference scheme was analyzed by Hebeker and Kuznetsov [5]. The authors emphasized
that the accuracy and stability of the solver depends on the size of the overlapping region. It was also suggested that in un-
steady problems the inter-patch boundary conditions can be extrapolated from the data computed in previous time steps,
however, no numerical results based on the extrapolation were provided.

Hebeker [6] considered decomposition of the domain into overlapping patches for solving unsteady two-dimensional
heat conduction problems. Inside each patch a finite element discretization was implemented. The author formulated a
non-iterative overlapping domain splitting scheme to solve the linear system while the boundary data at the subdomain
interfaces were obtained by extrapolation from the previous time steps. It was recommended that the width of the overlap-
ping region should be three to four elements to allow the numerical perturbations present due to the inter-patch conditions
to decay.

Wu and Zou [7,8] proposed a grid-overlapping parallel method for implicit schemes. The authors employed finite differ-
ence scheme, with one-sided derivatives based on upwinding considerations and time-lagging treatment for inter-patch
conditions. Their method was applied to simulate compressible Euler flow, and similar convergence rate to steady state
was observed with and without multi-patch discretizations.

One of the main arguments for justification of the stability and accuracy of the methods discussed in [4–8] was the expo-
nential decay (in the normal inward direction to the boundary) of perturbations present at the boundaries of the overlapping
regions. For sufficiently large overlap, the magnitude of the perturbations at certain distance from the interface boundary is
comparable or smaller than the time–space-discretization parameters ((Dt)k, (Dx)p, k,p P 1), hence the accuracy is not de-
graded. At the same time, the increased overlapping width (and multiple overlapping interfaces) required additional com-
putational work, hence reducing the parallel efficiency of the solvers.

Tai et al. [9] and later Wang et al. [10] employed a coarse-mesh-free characteristic domain decomposition method for
unsteady convection–diffusion equations. An Eulerian–Lagrangian method was employed to prescribe interface boundary
conditions at the subdomain boundaries. The authors employed Robin and Dirichlet conditions as interface matching con-
ditions. The Dirichlet conditions were imposed at the outlet boundaries where v�n > 0, while the Robin conditions were im-
posed at the inlets of the subdomains v�n < 0; here n denotes the outward normal and v the prescribed velocity vector. This
method was tested in a transient two-dimensional homogeneous convection–diffusion PDE with a variable velocity field,
and favorable results were reported.

The aforementioned methods considered explicit treatment of the inter-patch boundary condition and conforming (at
interfaces) meshes. There is a series of publications considering implicit solvers and matching solutions obtained in patches
with non-conforming meshes or different discretization (i.e., spectral/hp, finite element, etc.) by introducing mortar ele-
ments, see Bernardi et al. [11], Cai et al. [12] and references herein.

Implementation of overlapping domains for solution of PDEs was advocated by Bjørstad and Widlund [13], Dryja and
Widlund [14], Kim and Widlund [15], Dohrmann et al. [16], Pavarino and Zampieri [17] and others. In these works, overlap-
ping Schwarz preconditioners for iterative solvers were developed in conjunction with finite element and also spectaral/hp
element discretizations. Use of overlapping subdomains for preconditioning typically leads to faster convergence compared
to the non-overlapping approach. It was also observed that geometrically smooth interfaces bounding the overlapping re-
gions lead to faster convergence of the iterative solver. Typically, but not exclusively, the number of overlaps formed follow-
ing the aforementioned approaches depends on the number of partitions, which increases significantly the computational
workload.
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Paraschivoiu et al. [18] presented a multi-domain multi-model formulation for simulation of compressible flows. The
method considers breaking up the domain into several regions. Different models are then employed to compute a solution
in each region, and global continuity is achieved by proper interface boundary conditions.

The multi-domain approach is general and can be applied in simulation of many physical phenomena, e.g., contact prob-
lems (see works of a group of B. Wohlmuth, for example [19] and references therein); fluid–structure interaction, thermal
modeling and many more. An efficient implementation of the multi-domain methods depends primarily on the robustness
of the interface conditions and multi-level parallelism for message passing between different processor-groups.

Current objectives: In this study we develop a new domain decomposition approach in order to perform numerical sim-
ulations of 3D incompressible unsteady flows. For solution of the tightly coupled problem within each patch we re-use a well-
tested spectral-hp element flow solver NejTarG, developed at Brown University [20,21]. NejTarG employs a very effective
parallel low-energy basis preconditioner (LEBP) [22,23]. Its scalability is similar to the embarrassingly parallel diagonal
(or block-diagonal) preconditioner on thousands of computer processors, but at the same time it leads to computational sav-
ings of an order of magnitude with respect to other preconditioners.

We employ a non-iterative high-order time-stepping scheme, that is, sub-step iterations due to multi-patch partitioning
are not required. The number of overlapping patches is independent of the number of computer processors, and it is typically
very low. Moreover, since the overlapping regions are formed during the mesh generation their boundaries are smooth (pla-
nar). Forming overlapping regions while generating a mesh also helps to control the number of elements within a specific
region (patch). In our simulations, the ratio of duplicated spectral elements to the total number of elements is typically
1/50 to 1/1000, hence the computational overhead is negligible. Most of the benchmarks we adopted are for well-known
flows but we also present a very large-scale simulation of the intracranial arterial tree for a patient-specific geometry that
contains an aneurysm, depicted in Fig. 1.

The paper is organized as follows: In section 2 we review the solution of flow equations and highlight some of the main
issues that need to be resolved in order to make 3D simulations of blood flow in the entire human arterial tree feasible in the
near future. Subsequently, we present technical details of our new approach, specifically we discuss the two-stage method
that has features of discontinuous and continuous Galerkin formulations. We pay particular attention to implementing the
data exchange at the inter-patch interfaces, using a multilevel communicating interface (MCI). In section 3 we present the
accuracy and computational efficiency in simulations with the new method. In section 4 we conclude with a brief summary
and discussion. In Appendix A we provide details on MCI.
2. Methods

In this section we first review the high-order time-stepping scheme applied to Navier–Stokes equations in a monolithic
domain. Second, we provide the numerical scheme for solving the Navier–Stokes equation using the multi-patch decompo-
Fig. 1. Domain of intracranial vessels with aneurysm (d). The geometry was reconstructed from a set of 2D MRI images (a). The domain is subdivided into
four overlapping patches marked by different colors. The overlapping regions are depicted in (b,c,e). MRI data – courtesy of T. Anor and Dr. J. Madsen,
Harvard Medical School. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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sition. We will denote the new (multi-patch) method by 2DD, where ‘‘2” refers to two levels of granularity in decomposing
the computational domain. On the first level the domain X is decomposed into Np overlapping patches Xi �X, i = 1, . . . ,Np,
while on the second level each patch is subdivided into non-overlapping spectral/hp elements. The notation 1DD will be used
to denote the monolithic (standard) domain decomposition, i.e., Np = 1.

2.1. Discretization

We consider 3D unsteady incompressible flow in a rigid domain X; the flow is described by the Navier–Stokes equations:
Fig. 2.
overlap
with th
interpr
@v
@t
þ v � ðrvÞ ¼ �rpþ mr2v;r � v ¼ 0; ð1Þ
where v is the velocity vector, p is the pressure, t is time and m is the kinematic viscosity of a fluid. For spatial discretization
we implement the spectral/hp element method (SEM). The computational domain X is decomposed into a set of polymor-
phic non-overlapping elements Xei � X; i ¼ 1; . . . ;Nel, as illustrated in Fig. 2. Within each element the solution is approxi-
mated in terms of hierarchical, mixed-order, semi-orthogonal Jacobi polynomial expansions [20]. They are hierarchical in a
sense that the modes are separated into vertex (linear term) Uk(x), edge Wk(x), face Hk(x) and interior or bubble modes
Kk(x). The polynomial approximation of a field v(t,x) at any point xj is given by
vðt; xjÞ ¼
XNv

k¼1

v̂V
k ðtÞUkðxjÞ þ

XNe

k¼1

v̂E
kðtÞWkðxjÞ þ
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v̂I
kðtÞKkðxjÞ; ð2Þ
where Nv, Ne, Nf and Ni are the number of vertex, edge, face and interior modes, respectively, while the quantities with hat
denote modal amplitudes.

In order to solve Eq. (1) numerically we decouple the velocity and the pressure fields by applying a high-order time-split-
ting scheme; for the complete analysis of the scheme we refer to [20,24]. First, the provisional field v* is computed in physical
space (on the quadrature grid) using formula (3a). Second, we apply a Galerkin projection to obtain the weak formulations
for the velocity and pressure variables, i.e.
v� ¼
XJe�1

k¼0

akvn�k � Dt
XJe�1

k¼0

bkðnlÞn�k þ f

 !
; nl ¼ v � ðrvÞ ð3aÞ
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ðr � v�;/Þ þ @p
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;/
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� LDp̂D ð3bÞ

Hv̂nþ1 ¼ 1
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ðv� � Dtrp;/Þ þ Dtm

c0
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;/

� �nþ1

�HDv̂nþ1;D; ð3cÞ
where c0,ak are coefficients of backward differentiation formula, bk are coefficients of Adams–Bashforth integrator, Je is the
order of the time discretization scheme, H ¼M� Dtm

c0
L, and M and L are the mass and stiffness matrices, respectively. Also, v̂

and p̂ are unknown velocity and pressure variables, while v̂D and p̂D are known velocity and pressure variables. The last term
in Eqs. (3b) and (3c) is due to lifting (subtraction) a known solution to impose Dirichlet boundary conditions [20]. The upper
script D indicates that the operators HD and LD are constructed only for the boundaries, where Dirichlet boundary conditions
are imposed. We consider an arterial network as the target domain, with boundaries the vessel walls and also the multiple
inlets and outlets. The schematic representation of the domain boundaries is provided in Fig. 3. At the inlets (Xin), a Dirichlet
Illustration of the unstructured surface grid and the polynomial basis employed in NejTarG. The solution domain (patch) is decomposed into non-
ping elements. Within each element the solution is approximated by vertex, edge, face and (in 3D) interior modes. The shape functions associated
e vertex, edge and face modes for fourth-order polynomial expansion defined on triangular and quadrilateral elements are shown in color. (For

etation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Fig. 3. Illustration of computational domain X discretized into quadrilateral elements. Arrows indicate the primary direction of the flow. Xin and Xo are the
inlet and outlet boundaries; Xw correspond to the impermeable domain boundaries (walls).
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boundary condition for the velocity field is imposed. At the outlets (Xo) we impose a Dirichlet boundary condition for the
pressure and zero-Neumann boundary condition for the velocity. The Neumann pressure boundary condition at the bound-
aries with prescribed velocity (Xin and Xw) are computed from
@p
@n
¼ � c0vnþ1 �

PJe�1
k¼0 ðakvn�kÞ

Dt
�
XJe�1

k¼0

½bkðnlþ mr� ðr� vÞÞ�n�k

" #
� n: ð4Þ
Note, that the pressure boundary condition must be provided only at Xo, while at other boundaries it is computed locally from
the velocity field. We will exploit this feature in designing inter-patch pressure boundary condition, e.g., the type of bound-
ary conditions imposed at the boundaries of a patch Xi are identical to those for the full domain X.

In the C0 approximation the global linear operators H and L (Eqs. (3b) and (3c)) are constructed from the local ones
by static condensation. Due to sharing of the boundary degrees of freedom, the rank of the global operator is lower than
the total number of local degrees of freedom (DOF), however, for large computational domains the rank of H and L is
still very large, and consequently they have high condition number j. In solving systems (3b) and (3c) considerable
computational effort is required to invert the global linear operators with very high j. Use of effective preconditioners
can significantly reduce j, however, most of the available effective parallel preconditioners do not scale well on thou-
sands of processors.

2.2. Multi-patch Domain Decomposition (2DD) Method

To overcome the aforementioned problem we decompose the large computational domain into a series of weakly coupled
subdomains or patches of manageable size for which high parallel efficiency can be achieved on a sub-cluster of processors.
For example, the brain vasculature domain presented in Fig. 1 has been decomposed into four patches. The C0 Galerkin pro-
jection is implemented within the patch. On the other hand, continuity of numerical solution across different patches is
achieved by providing appropriate inter-patch boundary conditions (IPC). The 2DD is equivalent to decomposing the linear
operators H and L into a sequence of non-overlapping operators of small size. Although the operators are statically condensed
from the elementwise operators He and Le, the static condensation is performed within each patch independently. The meth-
od preserves the advantages of C0 descritization, namely low number of degrees-of-freedom (DOFs) compared to a full dis-
continuous Galerkin (DG) formulation, and implicit treatment of the viscous terms of Navier–Stokes equation within a patch.
The entire simulation is performed in two steps:

1. Solutions computed at time step tn from both sides of the interpatch interfaces are exchanged and the boundary condi-
tions required to compute the solution at time step tn+1 are computed explicitly as will be explained bellow.

2. Navier–Stokes equations in each patch Xi, i = 1, . . . ,Np are solved on different groups of processors using a semi-implicit
time-stepping scheme and C0 polynomial approximation. At this step no interpatch communication is performed. From
the computational perspective this step can be compared to solving concurrently Np unrelated problems on Np non-over-
lapping groups of computer processors.

In the following we provide the numerical scheme for the solution of a Navier–Stokes equations defined in a computa-
tional domain subdivided into two patches, as illustrated in Fig. 4. Extension to problems with more than two patches is
straightforward.

Consider the computational domain X 2 R3 subdivided into two non-overlapping patches XA and XB, and the interpatch
intersection XA \XB = C, (see Fig. 4). Let us denote by vA (vB) and pA (pB) the solution of the Navier–Stokes equation (1) in XA

(XB). The velocity and pressure fields in XA and XB satisfy the following boundary conditions:
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Fig. 4. Two-stage domain decomposition (2DD): patches XA and XB are connected by the interface boundary conditions. Velocity computed at the outlet of
XA (C�) is imposed as boundary condition at the inlet of XB (C+); pressure and velocity flux computed at C+ are imposed as boundary conditions at C�.
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vAjXA
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¼ vjXin

; vAjXA
w
¼ vjXw

; vBjX
B
w ¼ vjXw

;
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o
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:

At C the following interpatch boundary conditions are prescribed:
vBjCþ ¼ f ðvAjC� Þ;
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����
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¼ h
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����
C�
;
@vB
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pAjC� ¼ gðpAjC� ;pBjCþ Þ:
The Neumann boundary condition for the pressure at boundaries XA
in;X

B
in;X

A
w;X

B
w are computed locally using formula (4). We

extend the discussion on the functional relationships f,h,g in the next section.
At each time step the following sets of equations are solved simultaneously on different non-overlapping groups of

processors.
To obtain the solution in domain XA we solve
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To obtain the solution in domain XB we solve
vB;� ¼
XJe�1
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From the numerical point of view, such multi-patch decomposition reduces the size of linear system and consequently
the number of iterations. From the parallel computing standpoint, due to the weak coupling of the computational subdo-
mains, a preconditioned conjugate gradient solver can be applied within each patch independently. Each patch is assigned
to a sub-group of processors; these groups are not overlapping and can vary in size according to the number of DOFs within
a patch. Thus, the very expensive blocking communication between processes can be restricted to sub-groups of processes
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only. However, to exchange data across the patch interfaces an additional communication is required. In the following sec-
tions we overview the IPC and describe our approach to mesh generation; a Multilayer Communicating Interface (MCI) de-
signed to handle the inter- and intra-patch communications is discussed in Appendix A.

2.3. Inter-patch conditions (IPC)

The IPC required for coupling the 3D patches involve the velocity boundary condition at the inlets along with pressure
and velocity fluxes at the outlets. An illustration of two non-overlapping patches coupled by IPC is presented in Fig. 4. In
Fig. 5 we provide an illustration of two overlapping patches. In simulations with overlapping patches the data for the pressure
and velocity IPCs are extracted from the inner elements of the patch, thus decoupling the pressure and velocity interfaces. The
width of the overlap can be chosen according to the error estimates by [6,24]. Karniadakis et al. [24] have shown that the
time-splitting scheme introduces a (numerical) boundary layer of thickness dt � (mDt)Je; correspondingly the error decays
exponentially over distance s ðerror / e�s=dt Þ in the inward direction of the domain. Hebeker [6] proved that for the Helm-
holtz equation the disturbance introduced at the boundary of the domain decays exponentially in the inward direction nor-
mal to the boundary. According to [6] the error at the edge of the overlap can be estimated from e�kdoverlap=

ffiffi
m
p

, where k is a
positive constant, doverlap is the overlap width, and m is the coefficient of the diffusive term; note that according to [6] the
rate of decay does not depend on the discretization parameters, except doverlap. Also, in [6] it was suggested that the optimal
overlapping region should be three to four elements wide. Thus, use of overlapping domains minimizes the numerical error
in imposing IPC, which also enhances stability.

In the case of non-overlapping domains the patches XA and XB share a single interface C, while in the case of overlapping
domains we distinguish between two interfaces Cin and Cout as illustrated in Fig. 5. For the sake of simplicity of notation and
without loss of generality, in the following sections we will omit the subscripts ‘‘in” and ‘‘out” while referring to the inter-
patch interface.

To impose the IPC we follow a procedure similar to the discontinuous Galerkin method [25]. The hyperbolic component of
the Navier–Stokes equation dictates the choice of interface condition for the velocity based on the upwinding principle.
Assuming that v�n P 0 (with n pointing outward) at the patch outlet we impose the inlet velocity condition in patch B as
follows:
vB;nþ1jCþ ¼ f ðvAjC� Þ ¼
XJIPC�1

k¼0

nkvA;n�kjC� ; ð7Þ
where the superscripts denote time steps, nk are the extrapolation coefficients and JIPC is the order of the polynomial extrap-
olation. The velocity flux at the outlet of XA is computed as a weighted average of the normal velocity derivatives from both
sides of the interface, i.e.,
@vA;nþ1

@n

����
C�
¼ h

@vA

@n

����
C�
;
@vB

@n

����
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� �
¼
XJIPC�1

k¼0

nk k
@vA;n�k

@n

����
C�
� ð1� kÞ@v

B;n�k

@n

����
Cþ

� �
; ð8Þ
where 0 6 k 6 1. In the current study we employed central averaging to impose the Neumann B.C. for the velocity, i.g.,
k = 0.5. To impose alternating fluxes for velocity and velocity derivatives (appropriate for diffusion problem [28]) the param-
eter k can be set to k = 0. Alternative choices of numerical fluxes may also be considered; for example, imposing the total flux
for the velocity at C+ was advocated in [26,27,10]. Also, different choices for the flux in the DG formulation can be found in
[28,29]. Zhang and Shu [28] analyzed three formulations for numerical fluxes for discontinuous Galerkin method. According
to [28], for a hyperbolic problem the upwinding formulation is appropriate, while for a diffusion problem the use of alter-
nating fluxes is a proper choice.
Fig. 5. Two-stage domain decomposition (2DD): schematic representation of two overlapping patches and interfaces.
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The pressure at the patch outlet is given by
pA;nþ1jC� ¼ gðpAjC� ; pBjCþ Þ ¼ 1=2FðtÞðpA;njC� þ pB;njCþ Þ; ð9Þ
where 0 6 FðtÞ ¼ ð1� e�aðtn�t0ÞÞb 6 1 is a filter function [3]; in the current study we use a = 20,b = 2. The function F(t) is ap-
plied to filter out erroneous pressure oscillations due to inconsistent initial conditions, for exampler�v – 0. Note that inter-
patch boundary condition for the pressure is required only at one side of the interface (C�) since the Neumann boundary
condition for the pressure (Eq. (4)) at the (C+) can be used. Depending on the numerical scheme and initial conditions, erro-
neous pressure oscillations at the inlet may be present during the first few time steps. Such oscillations do not reflect the
physics of the problem and are associated with incompatible initial conditions that may lead to velocity divergence, i.e.,
r�vn=0 – 0, and hence they must be filtered out [3]. The error introduced by the explicit treatment of the interface boundary
conditions is controlled by the size of time step and the order of polynomial extrapolation JIPC in Eq. (7).

In the SEM approach, the solution for velocity and pressure is performed in modal space, thus, the values of velocity and
pressure can be transferred and imposed as boundary conditions in modal space, hence bypassing expensive transformations
from modal to physical space and vice versa. Of course, this can be done only when the meshes at C� and C+ are conforming,
otherwise use of mortar elements is appropriate. Imposing IPC in modal space has an additional advantage: we can exploit
the hierarchical structure of the basis functions and reduce the communication associated with imposing IPC by transferring
only the most energetic modes. Although a small reduction in accuracy may occur, from the computational standpoint, lim-
iting the number of modes to be collected from one subset of processors to another leads to shorter messages and conse-
quently to reduction in communication time associated with imposing IPC. The latter is very important in ultra-parallel
simulations.

Special care should be taken when the velocity IPC are imposed with reduced resolution due to the following reason: Con-
sider that the inlet boundary conditions at XA

in are prescribed by a time varying function with period T, then imposing the
velocity IPC with the full resolution will guarantee preservation of mass (and also higher order moments) over the time per-
iod T since
Z

T

Z
C

vAðtÞ � nA dC� dt ¼ �
Z

T

Z
C

vBðtÞ � nB dCþ dt;
while truncation of the polynomial expansion approximating the velocity field at C+ ðvB
truncÞ may introduce analytical

sources/sinks, i.e.,
Z
T

Z
C

vAðtÞ � nA dC� dt ¼ �
Z

T

Z
C

vB
truncðtÞ � nB dCþ dt þ Q s;
where the negative sign is due to nA = �nB. In this study we perform numerical simulations with IPC for velocity and pressure
imposed with both consistent (PVBC = PPBC = P) and reduced spatial resolutions, e.g., PVBC < P,PPBC < P. Here PVBC (PPBC) is the
order of the polynomial expansion approximating the velocity (pressure) at Dirichlet boundaries. In simulations with PVBC < P
we monitored the term Qs and found that it was very small, since the energy associated with the high-order modes in suf-
ficiently resolved solution is very small, hence no special treatment in minimizing Qs was implemented.

2.4. Mesh generation

The computational domains for arterial networks are characterized by significant geometric complexity. The partitioning
of X into patches is performed manually during the mesh generation stage. First, the 2D inter-patch mesh is generated,
which guarantees conforming meshes at the interfaces between adjacent subdomains, and second, the volume mesh is gen-
erated within each patch independently. In generating the inter-patch interfaces (2D mesh, C) we adopt the following con-
siderations: (i) C is a planar polygon. (ii) To minimize the numerical error due to incomplete transfer of boundary modes, the
interfaces are created far from the arterial junctions and high curvatures, e.g., far from regions where strong secondary flows
(including backflows) are expected to develop. We also employ h-refinement around the inter-patch regions. (iii) The size of
each patch (in terms of number of degrees of freedom) allows good strong scaling. The typical number of spectral elements
within a patch in our simulations of arterial flow is 20,000–160,000, and the typical number of computer processors dedi-
cated to each patch is 100–4000.

At the beginning of simulations each patch is preprocessed separately on different groups of processors; this stage in-
cludes constructing local (to the patch) linear operators (H and L). At the next stage, the faces of elements containing inlet
and outlet boundaries are marked, and then elements with conforming faces and normals pointing in the opposite directions
are identified in the adjacent subdomains. We note that no all-to-all and collective communication involving all processors
are performed. The data transfer algorithm implemented to impose the IPC conditions is discussed in Appendix A.
3. Results

In this section we evaluate the accuracy and computational efficiency of the multi-patch (2DD) method. First, we present
the computational domains employed. Second, we evaluate convergence of the numerical solutions in unsteady flow simu-
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lations with 2DD against results obtained with 1DD (single patch domain decomposition). Third, we perform simulations
investigating different locations and different sizes of the overlapping region, and we also consider full and reduced resolu-
tion in imposing IPC. Fourth, we present results of unsteady flow simulation with the 2DD method in a very complex net-
work of brain arteries. Finally, we conclude this section by presenting the parallel performance of the NejTarG solver based
on the 2DD method.

3.1. Parallel platforms

The computations presented in this paper were performed on (a) CRAY XT5 (Kraken) of National Institute for Computa-
tional Sciences (NICS [30]), (b) BlueGene/P (Intrepid) of Argonne National Laboratory [31] and (c) Sun Constellation Linux
Cluster (Ranger) of Texas Advanced Computing Center (TACC [32]), ranked as number 3, 8 and 9 on the TOP500 list
(http://www.top500.org, November 2009), correspondingly.

3.2. Computational domains

The following computational domains are employed:

(i) A 3D domain of a straight pipe with diameter D = 2.35 and length L = 7, discretized into 61,126 tetrahedral elements
(see Fig. 6). The subdomains XA and XB were created by subdividing the aforementioned geometry into two overlap-
ping parts of a length L = 4 each, i.e., the width of the overlapping region (XA \XB) is one length unit (four spectral
elements). The number of spectral elements in XA and XB is 36,582 and 36,202, respectively.

(ii) A 3D domain of a converging pipe, subdivided into two overlapping patches as illustrated in Fig. 7. This domain mimics
an axisymmetric tapering blood vessel. The first patch (XA, 22,321 tetrahedral elements) is located between the inlet
and the interface marked by S2, while the second patch (XB, 28,101 tetrahedral elements) is located between interface
S1 and the outlet.
Fig. 6. Domain of a straight pipe subdivided into to overlapping patches: XA (left patch) and XB (right patch). The overlapping region is located between
surfaces S1 and S2.

Fig. 7. Domain of a converging pipe subdivided into to overlapping patches: XA (left patch) and XB (right patch). The overlapping region is located between
surfaces S1 and S2.

http://www.top500.org


Fig. 8. Domain of a 3D channel with backward-facing step: computational mesh and inter-patch interfaces. S0 (S12) – inlet (outlet) of domain X.
Sj,j = 1, . . . ,11 – possible inter-patch interfaces. The depth of the channel is 5 length units (in y-direction), the ‘‘step” height is 1 length unit. The bottom plots
illustrate the surface mesh at y = 0 (and also at y = 5) around the inter-patch interfaces S1–S5 and S6–S8.

Fig. 9. Decomposition of the large computational domain into several overlapping patches.
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(iii) A 3D channel with backward-facing step as illustrated in Fig. 8. We consider several variations of decomposition of the
computational domain into patches, with the inter-patch interface located close to the step and further downstream;
simulations are also performed with different widths of the overlapping region. Clearly, in this domain the flow behind
the step separates and hence we can test the performance of the 2DD approach when the interface crosses the recir-
culation zone, which is a very rigorous test of the 2DD method.

(iv) Parallel efficiency of the method is evaluated by solving a transient flow problem in a pipe-like domain with multiple
constrictions, illustrated in Fig. 9. The computational domain X is composed of multiple patches of 17,474 tetrahedral
elements each, while the overlapping regions contain 1114 tetrahedral elements and its width is one element.

(v) A 3D domain of brain arteries reconstructed from MRI images, illustrated in Fig. 1. The domain was subdivided into
four large overlapping patches: of 75,585 (colored in green), 137,408 (pink), 80,261 (blue) and 131,859 (silver) tetra-
hedral spectral elements.

To enhance the spatial accuracy in simulating flow in domains (ii), (iv) and (v) the flat faces of elements discretizing the
domains surfaces were projected on the curved boundaries by the technique described in [33].
3.3. Accuracy verification

Unsteady flow – straight pipe: In our first numerical simulation we verify the spectral convergence of the error in solutions
obtained with the 1DD and 2DD approaches. We perform simulations of unsteady flow in a pipe, driven by a periodically
varying pressure gradient. The exact solution for such flow is known as Womersley solution [34]. The main flow character-
istics are the Reynolds number Re = DU/m = 350 and the Womersley number Ws ¼ 0:5D

ffiffiffiffiffiffiffiffiffiffi
x=m

p
¼ 4:375, where D is the inlet

diameter, U is the time–space-averaged velocity at the inlet, x is a characteristic wave number and m is the kinematic vis-
cosity. The unsteady component was represented by 20 Fourier modes. The data presented here corresponds to the time
where the instantaneous Reynolds number is Re = 1160. The Womersley velocity profile was imposed as Dirichlet velocity
boundary condition at the inlet of X (and also XA). Starting from the exact initial solution, time integration was performed
over five time units with time step Dt = 0.002 (2500 time steps) and polynomial order P = 3,4,5,6, and Dt = 0.0005 (10,000
time steps) for P = 7; a second-order accurate semi-implicit time-splitting scheme was employed within each patch. In
Fig. 10 we plot the convergence of the numerical solution obtained for unsteady flow in a pipe. In simulation with JIPC = 1,
spectral convergence is obtained in the patch XA only, while in XB the temporal error (of order O(Dt)) dominates for
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P > 4, due to O(Dt) error in imposing IPC for velocity at the inlet. Spectral convergence of the error in XB is recovered when the
velocity IPC are extrapolated with second-order accuracy (or higher), i.e., JIPC P 2 (7). We note that the error and the rate of
its decay in simulations with 2DD are similar to those in simulations with 1DD, i.e., in the standard spectral element method.

Steady/unsteady flow – converging pipe: We start by comparing simulation results obtained in steady flow simulations with
and without overlap. In the first scenario XA is interfaced with XB at S2 only, while in the second the overlapping region is
located between S1 and S2 as illustrated in Fig. 7. In Fig. 11 we plot the differences in streamwise velocity obtained in the two
simulations with respect to 1DD simulation. Although, the differences are relatively small in both cases, the use of overlap-
ping domains is clearly advantageous. However, the main advantage of introducing the overlapping region is the superior
stability. Simulations with zero overlap required filtering the high pressure modes (PPBC = P � 1, P = 4); moreover, simula-
tions performed with P > 4 were unstable, which was not observed in simulations with overlap.
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Fig. 11. Steady flow simulation with and without overlap: accuracy. Computational domain X is subdivided into two patches XA and XB. Solid line –
overlapping region is located between S1 and S2; dash line – patches XA and XB are interfacing at S2 only. Data is extracted along a line y = 0,x = 1.6. Solution
performed with Dt = 0.002, and PVBC = P = 4, PPBC = 3; Re = 350, the difference has been measured at T = 42.



Fig. 12. h-Refinement study: surface mesh of the patch XA (see Fig. 7). Plots R1, R2 and R3 depict h-refinement at the intepatch surfaces S2. The plot on the
right illustrates locations of lines y = 0, x = 0 and y = 0, x = � 1.6 where the velocity and pressure are extracted for comparison; color corresponds to velocity
component in x-direction.
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Next, we perform steady and unsteady flow simulations with three levels of h-refinement at the inter-patch interfaces S1
and S2 as illustrated in Fig. 12. At the inlet of X (XA) the unsteady (Womerseley) velocity profile was imposed; the corre-
sponding Reynolds and Womerseley numbers are Re = 350 and Ws = 4.375. The data presented here correspond to the time
when the instantaneous Reynolds number was Re = 1160. At the outlet of X (XB) a Neumann boundary condition for the
velocity and zero Dirichlet boundary condition for the pressure were imposed, assuming a fully developed flow. The simu-
lations were performed with the 1DD and 2DD approaches for each level of h-refinement. The numerical solutions were ob-
tained with PPBC = PVBC = P = 5, Dt = 0.0005, JIPC = 3. In the following, we present results of unsteady flow simulations; results
corresponding to steady flow are comparable in terms of deviation between the 1DD and 2DD solutions.

In Figs. 13 and 14 the difference between results obtained with 1DD and 2DD for the three h-refinements are presented.
The data are extracted along lines y = 0, x = 0 and y = 0, x = � 1.6 as depicted in Fig. 12(right); similar differences between the
1DD and 2DD simulations were observed at other locations. In both simulations we observe about an order of magnitude
reduction in the difference between the 1DD and 2DD results due to h-refinement. The very good agreement between the
flow fields obtained with 1DD and 2DD simulations suggests that the solution obtained with the 2DD method converges
to the exact one at a similar rate as the solution obtained with the 1DD method. Due to the O(Dt) approximation in treating
the pressure IPC, a discontinuity between the pressure fields computed in XA and XB is observed.

Simulations in a domain of 3D channel with backward-facing step: We also performed steady and unsteady flow simulations
in the 3D domain presented in Fig. 8 using the 2DD approach investigating various locations of the inter-patch interfaces and
different widths of the overlapping region. The reference solution was obtained using a 1DD simulation, performed with the
same mesh and spatio-temporal resolution. With this test we want to investigate the effect of performing the multi-patch
decomposition with the inter-patch interfaces located in the zone of separated flow. We also investigate the dependence of
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Fig. 13. Unsteady flow simulations in domain of Fig. 12 with 1DD and 2DD discretization. Differences in the streamwise velocity (left) and pressure (right)
extracted along the centerline of the domain, and computed with 1DD and 2DD. P = 5, PVBC = PPBC = 5, Dt = 0.0005. The velocity profile at the inlet of XB was
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space-averaged velocity at the inlet.
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accuracy on the spectral resolution at the inter-patch that affects directly the transfer of spectral modes and hence the com-
munication cost. Hence, we investigate cases for which PVBC 6 P and PPBC 6 P. (We note here that the spectral element meth-
od we use is stable also for representations of the pressure with the same order as the velocity.)

We start from steady flow simulations. In Fig. 15 contours of the streamwise component of velocity vector and pressure
are presented for (a,d) simulations with 1DD; (b,e) and (c, f) simulations with 2DD and overlapping patches. Very good
agreement between the 1DD and the 2DD simulation results is observed. The pressure field presented in plot Fig. 15(e) devi-
ates only slightly from the pressure presented in plots Fig. 15(d, f) (see pressure contour around z = 9). The larger deviation is
due to insufficient resolution in imposing IPC; specifically, due to the truncation error corresponding to the choice of
PVBC = PPBC = 3, P = 5. In simulations with interface located between S1 and S5 the inter-patch interface is located in the region
of relatively high velocity and pressure gradients while in the simulation corresponding to Fig. 15(c, f) the interface is located
in the region where velocity and pressure are very smooth and hence the truncation error in IPC is lower. In order to ‘‘zoom-
in” into the differences between the velocity computed with 1DD and 2DD, we first extract data along the line x = 1.25,y = 2.5
(located above the step), and second along the line x = 0.5,y = 2.5 (located bellow the step). The results presented in Figs. 16
and 17 correspond to simulations with reduced and full (‘‘consistent”) resolution, i.e., PVBC = PPBC = 3 < P and PVBC = PPBC = P.
Fig. 15. Steady flow simulation in 3D channel with backward facing step with 2DD and overlapping patches. Left – contours of (streamwise) w-velocity
components: w(x,2.5,z). Right – pressure contours: p(x,2.5,z). (a,d) 1DD; in (b,e) the overlapping region is located between S1–S5; in (c, f) the overlapping
region is located between S6–S8, respectively, as illustrated in Fig. 8. P = 5, PVBC = PPBC = 3, Dt = 0.002, Re = 72.
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Fig. 16(a,c) correspond to three simulations performed with different sizes of overlapping region: (i) S1–S5, (ii) S2–S4 and (iii)
S3–S4. The interface is located very close to the ‘‘step” and intersects the recirculation region. Results presented in Fig. 16(b,d)
correspond to the cases where the interface is located further downstream, which leads to about one order of magnitude
lower difference between the data from the 1DD and 2DD simulations. In plots 16(a,b) we present results obtained with
IPC imposed with reduced resolution, while in plots 16(c,d) we present results of simulations with IPC imposed with con-
sistent spatial resolution, i.e., PVBC = PPBC = P. Note that for the overlapping one-element-wide region (S3–S4) and
PVBC = PPBC = P, the deviation of the numerical solution between the 1DD and 2DD simulations is larger as expected due to
insufficient distance from the interface for the decay of perturbation imposed at the interface boundaries. However, filtering
out the high modes (particularly for the pressure) helps to reduce the erroneous oscillations. Similar results were obtained
for the pressure field computed with 1DD and 2DD at other locations and widths of the overlap. We note that Neumann
velocity boundary conditions are prescribed at the outlet of XA (interface S2) whereas Dirichlet velocity boundary conditions
are prescribed at the inlet of XB (interface S1). Simulations of flow over the backward-facing step with non-overlapping do-
mains with either consistent or reduced spatial resolution in IPC resulted in numerical instabilities.

The data presented in Fig. 17 are extracted across the recirculation region, where the flow changes direction and crosses
the interfaces S1 and S2 toward the domain XA. In the arterial flow simulations (see next section) the interfaces are created in
regions where the velocity direction is uniform, hence, the IPC for velocity will be always imposed following the upwinding
criteria at any element of C+.

In Fig. 18 we compare data computed with 1DD and 2DD in unsteady flow simulations. In this simulation the inlet velocity
was w = 1 + 0.2sin(0.002t). The results were obtained from simulations with the largest width of the overlapping region S1–
S5. The results clearly demonstrate that filtering the pressure field extracted from the downstream domain and imposed as
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Dirichlet pressure IPC at the outlet of the upstream domain has a favorable effect on reducing the error in both the velocity
and the pressure fields.

A summary on the computational efficiency in simulating the step-flow with 1DD and 2DD is provided in Table 1. We
observe that simulations with the 2DD approach are more efficient even for this relatively small problem size. The parallel
efficiency of the 2DD approach in solutions of large problems will be discussed in Section 3.4.

Pulsatile flow in the human brain: Next we present results from a large-scale patient-specific simulation in a very complex
domain consisting of a network of big arteries in the human brain. The geometry was obtained from MRI images while veloc-
ity boundary conditions at the four inlets were based on flowrate measurements by Phase Contrast MRI (Courtesy of T. Anor
and J.R. Madsen, Harvard Medical School). This simulation was performed for two cardiac circles. The data presented here
were extracted at the time corresponding to the maximum flow rate at the inlet of the left internal carotid artery (ICA).
The main parameters of the simulation are: Dt = 1E � 3, P = 6, PVBC = PPBC = 3 and JIPC = 1. At the four inlets Womersley veloc-
ity profiles were imposed as a superposition of 1 steady and 10 unsteady modes. In Fig. 19 we present results demonstrating
the continuity in the velocity field extracted along the inter-patch regions.

To summarize this section we provide the main findings of the accuracy verification study:

	 p-Refinement study: Results of simulation of unsteady flow in a straight pipe show that the 2DD method exhibits spectral
convergence, similar to the standard 1DD method.
	 Timediscretization: High-order extrapolation of the velocity boundary conditions is required to match the time- and space-

discretization errors.
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Table 1
Steady flow simulation in a 3D channel with backward facing step: performance on the CRAY XT5 (NICS). Nel, number of elements in two patches
Nel(XA) + Nel(XB). NCPU, number of processes assigned to patches. CPU-time, average time required for one time step.

Overlap Nel NCPU CPU-time (s); CPU-time (s);

P = 3 P = 5

1DD 31,518 240 0.21 0.31
S1–S5 16,651 + 23,636 96 + 144 0.13 0.26
S3–S4 14,633 + 18,930 96 + 144 0.11 0.22
S6–S8 24,492 + 9148 176 + 64 0.14 0.25

Fig. 19. Unsteady flow simulation in the intracranial arterial network with 2DD and overlapping patches: continuity of the velocity field across the
interpatch interfaces. The data are extracted along red–blue lines marked by numbers 1, 2 and 3. Dt = 0.001, P = 6; Re = 394, Ws = 3.7; PVBC = PPBC = 3. The
total number of spectral elements is Nel = 425,113, the number of quadrature points in each spectral element Nq = (P + 3)(P + 2)2 = 576 and number of
degrees of freedom DOF = (Nel)(Nq)4 = 979,460,352. The simulation was performed on 3712 cores of the CRAY XT5 (Kraken, NICS). (Courtesy of Yue Yu,
Brown University).
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Table 2
Kraken and Ranger: flow simulation in the domain of Fig. 9 using Np = 1 and Np = 4 patches. The mean CPU-time required for 1000 time steps (excluding
preprocessing), results were averaged over 10 simulation for each setup. P = 4, Dt = 0.002, Re = 470, preconditioner – LEBP. Simulations were performed using 8
(on Kraken) and 16 (on Ranger) cores per node.

NCPU CRAY XT5 (Kraken) Sun (Ranger)

Np = 1 Np = 4 Np = 1 Np = 4

256 807.7 s 729.1 s 999.0 s 796.3 s
1024 583.4 s 349.9 s 850.7 s 420.9 s
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	 h-Refinement study: The difference between the results obtained with the 1DD and 2DD methods can be effectively min-
imized using local mesh refinement. The p- and h-refinement study suggest that the results obtained with the 1DD and
2DD methods converge to the exact solution with similar rate (here we assume that the 1DD solution converges to the
exact one).
	 Use of overlapping patches enhances both the accuracy and the stability of the 2DD method.
	 Filtering of high pressure modes reduces the numerical error due to the IPC, and also enhances stability, particularly in the

case of very small width of the overlapping region.
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	 Optimal choice of IPC: The performed numerical tests suggest that use of JIPC = Je = 2 (or JIPC = 3) is sufficient to minimize
the error introduced by the explicit treatment of the IPC. The choice of PVBC = P helps to conserve the mass (and also the
high-order moments), while the choice of PVBC = P � 2 helps to remove the spurious oscillations introduced by the IPC for
the pressure.

Partial results for stability and convergence analysis can be found in prior works on non-iterative solvers and multi-do-
main decomposition [4–6]. More rigorous theoretical results are required for stability and convergence analysis for various
IPCs. Additional research is required to find optimal IPC, particularly for the cases of the reversal flow, such as in the simu-
lations of forward facing step flow.

3.4. Parallel efficiency

In this section we present strong and weak scaling results obtained in simulations of transient flow. First, we compare the
strong scaling obtained with the 1DD and 2DD approaches. Second, we focus on the weak scaling obtained in simulations
with the 2DD approach. We monitor the CPU-time required to integrate the solution over 1000 time steps; these simulations
were performed 10 times on each computer to take into account the system ‘‘noise”.

The first test employs the computational domain X of Fig. 9, subdivided into 2, 4 and 8 overlapping patches. The number
of spectral elements in a single-patch domain was Nel1 = 130,880, while in the cases of 2, 4 and 8 patches the total number of
elements was Nel2 = 131,994, Nel4 = 134,222 and Nel8 = 138,678, respectively. The increasing number of elements is due to
overlapping regions with each overlapping region having 1114 elements shared by two neighbor patches. The computations
were performed on 1024 cores of Ranger and Kraken with Dt = 0.002, P = 4 and initial condition v = 0. The mean CPU-time
and the standard deviations are presented in Fig. 20(left). Note, that despite the increasing problem size (due to the overlap),
the computational cost is decreasing due to lower volume of the communication and lower conditional number correspond-
ing to local (to each patch) linear operators. To appreciate the effect of 2DD on the strong scaling we performed simulations
with one and four patches (Np = 1 and Np = 4) and relatively low-order polynomial approximation P = 4. These simulations
were performed on Kraken and Ranger using 256 and 1024 cores equally subdivided between four patches. The choice of
relatively low P, high core count and use of computers with relatively fast CPUs usually results in poor strong scalability.
The results are summarized in Fig. 20(right) and Table 2. By comparing results for Np = 1 and Np = 4 with respect to the num-
ber of processes we can observe considerably better strong scaling in simulations with 2DD. In Fig. 21 we plot the iteration
count (Nit) for the Helmholtz solver for velocity and the Poisson solver for pressure in solution with 1DD and 2DD using four
patches. The mean Nit is computed at each time step as meanðNitÞ ¼ 1=Np

PNp
i¼1NitðXiÞ. The higher Nit at the beginning of the

simulation is due to the IPC, specifically due to discontinuity in the pressure field between the patches. After some transient
period, the Nit in 1DD and 2DD is about the same, despite the smaller size of a problem defined within each patch. This is not
surprising and is related to excellent h- and p-scaling of the LEBP. Based on the data presented in Table 2 and Figs. 20 and 21,
we can conclude that the lower CPU-time requirements by the 2DD method are due to decreased volume of communication,
rather due to the conditioning of the local to each patch linear operators.

In simulation with the diagonal preconditioner the condition number j of the Laplacian operator is expected to grow lin-
early with the number of elements Nel [20], hence Nit /

ffiffiffiffiffiffiffi
Nel
p

. In Fig. 22 we plot Nit required by the Poisson and Helmholtz
solvers in simulations with 1DD and 2DD. The iteration count for the pressure solver with 2DD decreased approximately by a
factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NelðXÞ=NelðXiÞ

p
as expected. The number of iterations required by the Helmholz solver did not change signifi-
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cantly. Due to relatively small Dt and P the Helmholtz operator is Mass-matrix dominant and the low sensitivity of Nit re-
quired by velocity solver to Nel reflects favorable scaling of the diagonally preconditioned operator.

The relatively small gain in the CPU-time in simulations with 8 patches with respect to the simulations with the four
patches observed in the first test suggests that further decomposition of the domain into more patches will not be effective.
The saturation in minimization of the solver time by increasing number of patches raises a question on the optimal patch
size. It has been shown in [3] (Section 3.1) that the strong scaling of the 2DD solver is bounded by the strong scaling of a
solver applied within each patch. Parallel efficiency of a solver applied within a patch typically grows with the reduced
patch’s size and the number of cores assigned to the patch. Hence, additional subdivision of already small enough patches
may not lead to better scaling. The optimal patch size is closely related to the number of cores employed for solution of a
problem within the patch, and the optimal combination is the one which results in very good strong scaling. We note that
for different problems and also different computer architectures the optimal patch size may vary.

In our second test we verify the good weak and strong scaling on up to 32,768 cores of the BlueGene/P and CRAY XT5
computers. Simulations were performed with 3, 8 and 16 patches with about 17 K spectral elements in each patch. The con-
vergence of velocity and pressure at the inter-patch interfaces after 1000 timesteps is shown in Fig. 23.

The results of weak scaling tests are summarized in Table 3 showing very good weak scaling. The performance of the 2DD
approach was also verified in simulations with 40 patches on 96,000 cores of the CRAY XT5. The number of degrees of free-
dom in this simulation was about 8.21B (P = 12). In this simulation convergence of the iterative solver was accelerated by an
Table 3
BlueGene/P and CRAY XT5: flow simulation in the domain of Fig. 9 using 3, 8 and 16 patches. Np, number of patches. CPU-time, time required for 1000 time
steps (excluding preprocessing). P = 10, Dt = 0.0005, Re = 470, preconditioner – LEBP. Case A1(2, 3) corresponds to simulations with 1024 cores/patch, case
B1(2,3) corresponds to simulations with 2048 cores/patch. On BlueGene/P simulations have been performed using four cores per node (mode vn). On CRAY XT5
simulations have been performed using 8 cores per node.

Case Np # of Total CPU-time Weak (strong)
(DOF) Cores/patch # of cores (s) Parallel efficiency

BlueGene/P
A1 3 (0.384B) 1024 3072 996.98 100% (100%)
A2 8 (1.038B) 1024 8192 1025.33 97.2% (100%)
A3 16 (2.085B) 1024 16,384 1048.75 95.1% (100%)
B1 3 (0.384B) 2048 6144 650.67 100% (76.6%)
B2 8 (1.038B) 2048 16,384 685.23 95% (74.8%)
B3 16 (2.085B) 2048 32,768 703.4 92% (74.5%)

CRAY XT5
B1 3 (0.384B) 2048 6144 462.3 100%
B2 8 (1.038B) 2048 16,384 477.2 96.9%
B3 16 (2.085B) 2048 32,768 505.1 91.5%
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accurate prediction of the initial state [21]. It was observed that the average CPU-time per time step required to solve such a
large problem was about 0.25 s. Moreover, considering the very good weak scaling, there is the potential for solving truly
ultrascale flow problems (e.g., blood flow in the entire arterial tree) within similar wall-clock time per time step.

To summarize this section we provide the main findings of the scalability study:

	 Strong scaling: The 2DD method offers dual path to strong scaling of a solver. Such scaling can be improved by performing
interpatch optimization and also by decomposing a fixed size computational domain into more patches.
	 Weak scaling: The method exhibits very good weak scaling. This result is expected as solvers applied within each patch are

executed on non-overlapping groups of processors which involve no communication. The point-to-point communication
between different patches is performed only three times per time step (to pass the velocity, pressure and velocity flux
values) hence, its impact on the overall scaling is negligible.
	 Optimal patch size: Based on our recent findings and also on the previous study [3] we determine the optimal patch size as

a domain size for which good strong scaling can be achieved. Further decomposition of the domain into even smaller
patches may not improve the parallel efficiency. We note that decomposition into loosely coupled patches introduces
numerical error at the interfaces. Hence, ideally (in terms of accuracy) the optimal number of patches per domain is
strictly one. However, due to poor scalability of a (semi-)implicit tightly coupled solvers on tens of thousands computer
processors, decomposing a computational domain into loosely coupled patches provides an efficient way of balancing the
computational efficiency with accuracy. We also note that the optimal patch size depends on the architecture of the com-
puter on which the solver is executed as well as on the spatial resolution employed (polynomial order and number of
spectral elements). For example, due to network differences the optimal patch size in simulations on BlueGene can be
greater than on the Sun Constellation Linux Cluster (Ranger, TACC). Use of high-order polynomial approximation (large
P) leads to better scalability than solving the same problem with lower resolution (in terms of P). The later occurs due
to the maximizing the ratio of the volume of computation to the volume of communication within each patch, hence, with
very high P good parallel efficiency can be achieved on within every a patch.
	 Multi-patch decomposition offers additional advantages (not discussed in this paper) for data post-processing. Post-pro-

cessing a data file produced in smaller domain (patch) is computationally favorable than post-processing extremely large
data sets.

4. Summary and discussion

Current CFD or other general computational mechanics codes that employ implicit or semi-implicit time-stepping algo-
rithms are not scalable to thousands of processors/cores available in the emerging petaflop computers. The main bottleneck
is the lack of scalability of effective linear iterative solvers for problems involving matrices with size one billion or greater
corresponding to extremely large condition number. In this paper, a new scalable approach is presented specific to numerical
simulation of incompressible flows. The target application is simulation of blood flow in the human arterial tree but the same
method can be applied to other complex networks or extended to other fields. The proposed approach provides a dual path
to scalability by affecting favorably both the strong and weak scalability.

This two-level domain decomposition method (2DD) has been implemented in conjunction with the spectral/hp-element
for spatial discretization and a high-order semi-implicit time-splitting scheme. Results of steady and unsteady 3D flow sim-
ulations in simple and complex geometry domains show excellent agreement between the standard single-patch approach
(1DD) and the multi-patch approach (2DD). Flow simulations on up to 96 K cores showed both very good time per time step
but also favorable scaling; such simulations are not feasible with a monolithic scheme.

The new 2DD method is suitable for the hybrid architecture of the emerging multi-core petaflop systems with 100-way or
more cores, in that a direct map of each patch to a ‘‘fat” node can be performed. This, in turn, provides great flexibility in
balancing accuracy and parallel efficiency. Moreover, the 2DD approach leads to less intensive communication among nodes,
it considerably reduces the number of iterations of the linear solvers, and translates the problem of overall scalability to opti-
mizing the scalability of individual patches – a much simpler task indeed! From the implementation standpoint, we note
that the 2DD approach is an almost ‘‘non-intrusive” method as it requires minor modifications in the existing codes. Specif-
ically, the most significant modification in our code was replacing the main function by a function with a different name and
adding one more variable to the arguments of this function – the pointer to sub-communicator, provided by the Multilevel
Communication Interface (see Appendix A), over which the patch local solution is computed. The inter-patch boundary con-
ditions (IPC) developed in this study are rather simple in order to avoid unnecessary communication costs. Alternative IPC
must be considered, particularly for Poisson solver for the pressure. To this end, more research is required to develop robust
and scalable interface conditions that take advantage of the advances in bandwidth in the next generations of parallel
computers.
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Appendix A. Multilayer Communicating Interface (MCI)

A parallel numerical simulation performed with 2DD involves two types of communication: (a) local or intra-patch com-
munications, where processes from the same group communicate, and (b) global or inter-patch communications, where pro-
cesses from different groups communicate. The inter-patch communication developed for 2DD can be efficiently performed
within a single supercomputer as well as across geographically distributed computers. A schematic representation of MCI
semi-hierarchical decomposition of the global communicator is illustrated in Figs. 24 and 25. In the following we provide
a detailed description of different layers of communicators.

The first layer (L1) of the MCI is the default communicator MPI_COMM_WORLD. The second layer (L2) is derived from L1
using topology-aware splitting, processes executing on the same computer are grouped in a non-overlapping manner
(groups S1, S2 and S3 in Fig. 24). The splitting of L1 is done dynamically, in simulations on distributed computers MPICH-
g2 and MPIg middlewares provide a functionality to easily split processes according to topology. The third layer (L3) is de-
rived from L2 using task oriented decomposition; each L3 sub-group is dedicated to parallel solution of one tightly coupled
problem (groups T1, T2, T3 and T4 in Fig. 24). The task-oriented decomposition is controlled by information provided as an
input to NejTarG. When the program is executed on a single supercomputer the L3 communicators are derived directly from
L1.

Solving the tightly coupled problem may involve specific tasks typically executed by a subset of processes, hence a fourth
layer (L4) of MCI is created. In the arterial flow simulation such tasks involve treatment of boundary conditions at the arterial
inlets and outlets. In NejTarG different types of inlets and outlets are represented by three objects: (1) class TerminalBoun-
dary, (2) class OvrLapBoundary and (3) class MergingBoundary. Each of the three objects handles communication and pro-
vides the required functionality for inlets and outlets, i.e., computing flowrates, mean pressure, mapping between patches,
exchanging data for IPC, etc., for additional information we refer to [21]. The numerical integration over multiple inlets/out-
lets is performed concurrently and the blocking MPI_Allreduce is executed simultaneously over different L4 sub-communi-
cators. The L4 sub-communicators implemented in NejTarG are subdivided into three groups (as illustrated in Fig. 5): (i)
T_inlet (T_outlet): sub-communicator consists of processes assigned to partitions with elements facing inlet (outlet) of the
global domain X. (ii) M_inlet (M_outlet): sub-communicator consists of processes assigned to partitions with elements facing
inlet (outlet) of the patch that interfaces with the adjacent patch. (iii) O_inlet (O_outlet): sub-communicator consists of pro-
cesses assigned to partitions with elements which faces are conforming with the faces of elements of the outlet (inlet) of the
adjacent patch. The point-to-point communication between the ROOTs of L4 is performed over MPI_COMM_WORLD. Addi-
tional sub-communicator, connecting the ROOTs of all L4 sub-communicators derived from the same L3 communicator and
also the ROOT of corresponding L3, is required to transfer flowrates and mean pressures computed locally to the ROOT of L3,
which outputs these data to a file or transfers it to the dedicated IO processor. The mapping as well as number of processes in
the L4 communicators is not known a priori, and it is done during the preprocessing stage. The zero overlap can be consid-
ered as a limiting case of the overlapping domains, and from the standpoint of parallel algorithm the two cases can be treated
in exactly the same way.

Fig. 25(top) depicts an example of a solver executing four tasks (four L3 sub-communicators). Only one process is as-
signed to the first task, while 14 processes are assigned to tasks 2, 3 and 4. Task 1 is dedicated to the 1D arterial flow solver
and is employed for co-processing of the intermediate results, e.g., IO, system calls, etc., while tasks 2–4 solve the 3D flow
equations in arterial domains schematically represented at the right of Fig. 25(top). In the illustration of Fig. 25(top) each
patch has one inlet and different number of outlets, and, accordingly, different number of L4 sub-communicators. In simu-
lations on low number of processes the L4 communicators may overlap, however, this is not a problem from the algorithmic
point of view.
Fig. 24. Multilayer Communicating Interface: high level communicator splitting. MPI_COMM_WORLD is subdivided according to the computer topology to
form three non-overlapping process sub-group (Sj). The S2 group is subdivided using task-oriented splitting and four non-overlapping Tj groups are created.
Cells represent processes.



Fig. 25. Multilayer Communicating Interface. (top) Low level communicator splitting. Here four third-level process sub-groups (Tj) are shown. The low level
communicator splitting is performed within each of the Tj sub-group. The inlet and outlet communicators (L4) are created. (bottom) Three-step algorithm
for inter-patch communication in an ‘‘aorta” domain (Fig. 1).
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The processes of L5 sub-communicator include ROOTs of L3 sub-communicators, their main purpose is to synchronize
computation between the tasks.

Solving flow equations with 2DD requires imposing interface boundary conditions for the velocity and pressure as ex-
plained in the main paper, which necessitates data exchange across the patch interfaces. The inter-patch communication
is implemented in three steps, as depicted in Fig. 25(bottom) and explained next. In the illustration of Fig. 25(bottom) we
consider non-overlapping patches; the communication pattern in the case of overlapping patches is similar. Processes 4–
6 compose L4: M_outlet communicator of the blue patch, while processes 0–2 compose L4: M_inlet of the green patch.
On the first step, data from the interface partitions is gathered to the ROOT of L4. On the second step, point-to-point com-
munication between the ROOTs of corresponding L4 occurs in passing data between the adjacent patches. In the third step,
data received by the ROOT of L4 is scattered (or broadcasted) to the interface partitions only.

Exchanging data through the ROOTs of L4 sub-communicators is an optimization made for simulations on distributed
computers to minimize the traffic over the slower network. The emerging petaflop supercomputers have features of a het-
erogeneous network in terms of communication speed. The differences in latency and bandwidth in communication be-
tween different partitions of heterogeneous computers must be accounted for in the design of the MCI; also different
tasks executed by a program might be mapped on different partitions, e.g., MPI, IO or floating-point intensive operations.
The hierarchical multi-level parallelism allows execution of blocking communication over different groups of processes. Iter-
ative solution of linear systems performed by PCG requires three MPI_Allreduce calls at each iteration. The high penalty of
communication cost on thousands of cores affects the parallel efficiency adversely. For example, our tests indicate that
the MPI_Allreduce-time on 11,152 cores of Ranger is about five time slower than on 4096 cores.
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